

onepoint

To Each Metric Its Decoding: Post-Hoc Optimal Decision Rules of Probabilistic Hierarchical Classifiers

Roman Plaud 1,2 Alexandre Perez-Lebel^{3,4} Matthieu Labeau ¹ Antoine Saillenfest ² Thomas Bonald ¹

¹Institut Polytechnique de Paris

²Onepoint

³Inria Saclay

⁴Fundamental Technologies, USA

TL;DR

- We formalize how to **optimally make a prediction** from outputs of a hierarchical classifier, with respect to a specified metric.
- For *single-node* predictions, we propose universal metric-optimal algorithms.
- For subset of nodes predictions, we derive optimal rules specifically for hierarchical F_{β} scores.
- Our methods consistently outperform standard heuristics methods, particularly in ambiguous or underdetermined cases.

Problem Setup

Given:

- Input x (image, text etc.)
- Model $f \Rightarrow \hat{p}(\cdot \mid X = x)$
- Cost function C(h, y)

Objective:

■ Find prediction h that is optimal for metric C and for probability estimates $\hat{p}(\cdot \mid X = x)$

Hierarchical Classification

Single leaf Classification:

- Input $x \in \mathcal{X}$, label $y \in \{l_1, \ldots, l_K\}$
- Joint distribution $(x,y) \sim \mathbb{P}$

Hierarchy:

- lacktriangle A directed tree $T=(\mathcal{N},\mathcal{E})$ with \mathcal{E} chy (right) leaves $\mathcal{L} = \{l_1, \dots, l_K\}$
- Internal nodes represent super-categories

Dog Hunting Dog Sporting Dog Retriever

Carnivore

Entity Object Animal Vertebrate Placental

Golden

Different metric settings

Evaluation metric. Given prediction set \mathcal{H} and leaf labels \mathcal{L} , de-

fine

 $C: \mathcal{H} \times \mathcal{L} \to \mathbb{R}$ $(h,y)\mapsto C(h,y)$

Leaf prediction: $\mathcal{H}=\mathcal{L}$

Node prediction: Subset of nodes prediction: $\mathcal{H} = \mathcal{P}(\mathcal{N})$ $\mathcal{H}=\mathcal{N}$

Bayes-optimal decoding

Optimal decision rule. An optimal decision rule for metric C: $\mathcal{H} \times \mathcal{L} \to \mathbb{R}$ is given by $\xi_C^* : \Delta(\mathcal{L}) \to \mathcal{H}$ where

$$\xi_{\mathbb{C}}^*(p) = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{l \in \mathcal{L}} p(l)C(h, l)$$

Brute-force Decoding: Enumerates all possible predictions.

Time complexity: $\mathcal{O}(|\mathcal{H}| \cdot |\mathcal{L}|)$

Objective: Find optimal algorithms with better complexity.

Theoretical Contributions

\mathcal{H}	Assumption	Brute Force	Our Algorithm	In the paper
\mathcal{N}	Hierarchically reasonable	$O(\mathcal{N} \times \mathcal{L})$	$O(\log(\mathcal{N}) \times \mathcal{L})$	Theorem 4.4
$\mathcal{P}(\mathcal{N})$	hF_{eta} scores	$O(2^{ \mathcal{N} } \times \mathcal{L})$	$O(\log(\mathcal{N})^2 \times \mathcal{L})$	Theorem 4.7

Hierarchically Reasonable: C is an increasing function of the length of the shortest path between node h and leaf y. (Definition 4.2) hF_{β} score: Extension to hierarchical classification of standard F_{β} score: balances precision and recall (Kosmopolous et al., 2014)

Empirical Results

Relative gain of performance of a decoding strategy vs. the average of all decoding strategies for different metrics.

On the influence of blurring

More model **entropy**

⇒ more heuristic/optimal **dis**agreements

 \Rightarrow optimal algorithms crucial.

Take Home Message

- Our decoding algorithms are faster than brute-force decoding and **better** than heuristic decodings.
- The more uncertain a model is, the more important it becomes to optimally decode its outputs.